Scare Tactics – Why Do So Many “Public Health Experts” Promote Fear vs. Food?

pork chop 1How many of us are motivated by fear every single day? We’d like to think that we’re lucky enough to live in a society where we don’t feel afraid. In contrast to inhabitants of many war-torn regions we are unlikely to be shot as we drive to work; when we’re sick we have the luxury of modern medical attention (Obamacare not withstanding); and we can buy almost any food we fancy, at any time of year and feel safe in our food choices… or can we?

Food safety is an underlying assumption of dietary choice within the USA. We buy food based on three major factors: taste, price and nutrition. Safety isn’t a defining factor in choosing between the cheese quesadilla, the chef’s salad or the T-bone steak because most of us have rarely experienced significant negative health effects as a consequence of food choice (aside from the annual Thanksgiving food coma).

Yet so many food commentators, self-proclaimed experts (I read Michael Pollan therefore I am…) or bloggers appear to exist for the sole purpose of instilling consumer fear. Take this recent article in Salon – 9 reasons why we should fear eating steak – apparently it’s riddled with antibiotics, full of heavy metals and likely to give us all mad cow disease. I’m not going to turn this blog post into a thesis, so today will simply address one of the issues raised in the article, and examine the others in future posts.

I’m a scientist by training. In my career to date, I’ve learned that the more controversial the topic, the more important it is to base claims on sound data that is peer-reviewed and published in order to gain trust. If I present data that challenges perceptions, the first questions are always “Is this published in a peer-reviewed journal? Who funded it? How do I know it’s correct?” That is not to say that science is the only way to communicate – it’s not. Yet when making claims, it’s important to have science, or at least logical and biologically-feasible arguments, to back them up.

Yet, if we’re asking a question, even if it’s a loaded question that may instill fear or doubt into the reader, apparently scientific foundation is redundant. Could combining coffee and bagels in the same meal cause impotence? Is breast cancer caused by the rise in popularity of household pets sleeping on their owners’ beds? Is your tiredness really the result of too little sleep, or could it be all the chemicals that “big food” uses every single day? Hey, I’m just asking! Not making a claim, not saying that X + Y = Z, just throwing the thoughts out there. But having read them, how many of us now are thinking about our sexual performance, the potential ill-effects of Fluffy the cat, or how we really do seem to be more tired nowadays? (note that these really are examples that I have invented, I know of no scientific foundation for any of them).

Possibly the most damaging line in the Salon article contained no data. No scientific foundation. Just a question:

Could Ractopamine, added to the food supply in 1997 with little public awareness1, be contributing to skyrocketing rates of obesity and hyperactivity in children?

The FDA approved the use of Ractopamine in swine in 1999. It’s added to the diet of finishing pigs, improving feed efficiency and partitioning more feed nutrients into lean meat rather than fat (as demanded by today’s consumer). Effectively it allows us to produce more pork using fewer resources, but it has been linked to behavioral changes in pigs.

Most of us are aware that childhood obesity is a huge issue (pardon the pun). Many of us know children that have been diagnosed as having attention deficit hyperactivity disorder (ADHD). So does Ractopamine cause these? It’s as likely as suggesting that eating alfalfa hay is going to make us lactate like dairy cows.

Maximum residue limits (MRLs) exist to make sure that there are no human physiological effects of veterinary drugs in meat, milk or eggs from treated animals. Regulatory bodies including CODEX assess potential human effects of a drug residue in animal products by multiplying the average residue level in food by the average intake. For example, if the residue level is 2 micrograms per 100 grams and the average person eats 300 grams of that food each day, the intake would be 6 micrograms. This intake is then compared to the acceptable daily intake (ADI) – the quantity that could be eaten every day for a lifetime without human health risk. This is usually the intake that would have a physiological effect, divided by a safety factor of one hundred. The MRL for Ractopamine in meat is 0.25 parts per million (0.00000025 grams per gram) with an ADI of 1.25 micrograms per kg of bodyweight per day.

If we examine the average pork intake for a 10 year old child in the USA (detailed calculation below) we see that they’d have to eat 13.3x more pork than the daily average to even equal the ADI – remember that’s the intake at which we would expect no physiological effect. For Ractopamine to have a physiological effect, the ADI would have to be increased one-hundred-fold. So the average 10-year old child would have to eat 1,330x more than the average child’s intake of pork, equivalent to 35 lbs of pork per day, every single day (the average adult only eats 48 lbs of pork in a year), for Ractopamine to have a health effect. My little nieces adore pork sausages, but they are pushed to eat two (approx 2 oz) in a day, let alone 35 lbs worth!

Still think that we can link Ractopamine use to obesity and ADHD? We can’t prove a negative, but it’s as tenuous a link as suggesting that we could drown in a single drop of water. So why are public health “experts” like Martha Rosenberg using fear tactics to scare us rather than extolling the positive contributions that high-quality animal proteins make to the human diet? Surely there’s no agenda there….is there?

1Note that all the data relating to this is freely-available on the internet – the “little public awareness” line is simply more fear-mongering.

Details of Ractopamine calculation

Let’s examine an average child’s intake. The average 10-year-old boy in the USA weighs 32 kg (71 lbs) and needs 34 grams of protein each day. In the USA, meat contributes about 40% of protein intake and about 21% of that comes from pork. That means, on average, a 10-year-old boy would eat about 12 g of pork per day (2.9 g protein).

If Taylor eats 12 g of pork each day at the maximum residue limit of Ractopamine (note that this would be unusually high), he’s consuming 12 g x 0.25/1,000,000 = 0.000003 g Ractopamine. His ADI = 1.25 micrograms x 32 kg bodyweight = 40 micrograms, or 0.00004 grams. That’s 13.3x higher than his intake. So a child could eat 13.3x more pork than average, every single day, and not be expected to have any physiological effects. For ingested Ractopamine to have a physiological effect he would have to eat 100 times that amount – 16 kg, or 35 lbs of pork per day. To put that into context, the average adult eats 48 lbs of pork in a year.

Are We Producing More Food…and Feeding Fewer People?

Waste foodI’m ashamed to admit that the picture to the left is of the lunch table that a media colleague and I left last week – after spending an hour lamenting the fact that in the US, 40% of food is wasted (30% globally). Admittedly, that waste isn’t all down to restaurant portions (in our defense, we both had to fly home, so doggie bags weren’t an option) – however, according to FAO data here, consumer waste accounts for anything between 5% (in Subsaharan Africa) and 39% of total waste (North America and Oceania). The difference (anything from 61% – 95%) is made up from losses between production and retailing.

Losses from production to retail comprise by far the biggest contribution to waste in the developing world, which makes absolute sense – if food is your biggest household cost and hunger is a constant and real danger, the concept of wasting purchased food would seem ridiculous. In the developing world, a myriad of factors play into food insecurity including low agricultural yields, lack of producer education (particularly for women, who are often the main agricultural workers), political instability and military conflict (Pinstrup-Andersen 2000). However, possibly the biggest threat to food security is a lack of sanitary and transport infrastructure (Godfray et al. 2010) – building a milk pasteurization plant is a great opportunity to improve shelf-life, but can only be effective if producers have the facilities to refrigerate and transport milk. Improving tomato yields can reap economic dividends, but if they are transported to markets packed into plastic bags on the back of a bicycle, the wastage is huge. I’m not going to pretend I have the solutions to global food wastage, but what can we do in our own households?

Just as our grandparents learned during WWI and WWII – when food is scarce, you make the most of every single drop of milk or ounce of grain. Yet in the modern developed world, we can afford to waste almost 2/5 of our household food through not understanding expiration dates (cheese does not spontaneously combust into a listeria-ridden ooze at midnight on the day of the expiration date); throwing away the “useless” parts of food waste (radish leaves and wilted celery are actually really good in soup); or simply buying more than we need. In a recent study of greenhouse gases associated with US dairy production, the carbon footprint of a gallon of milk was increased by almost 20% simply because of the amount of “old” milk that consumers poured down the sink each day.

To go back to the picture above, it’s tempting to blame the restaurants – portion sizes tend to be huge, so in this carb-conscious world, it’s not “our fault” if we forgo the last 500 calories by leaving half a plateful of potato chips – they should have just served a smaller portion in the first place, right? Well, maybe. If we’re feeding dairy cows or beef cattle and seeing more than 5-10% feed unconsumed, we’ll reduce the amount fed. I’m sure that exactly the same practice would pay dividends in the restaurant world, and I’d be willing to bet that they could charge exactly the same price.

I spend most of my time myth-busting, showing that the modern beef and dairy industries are far more efficient than the farming systems of 40 or 70 years ago and that we now produce more food using far fewer resources. However, are we really feeding more people if we’re wasting 40% of our food? To suggest that we return to a practice from the WWII era feels almost heretical, but here’s an idea – rather than defining “sustainable” systems as those producing artisan cheeses from heirloom breeds cared for by hemp-wearing liberal arts graduates, why doesn’t every restaurant (or suburb) have a small herd of backyard pigs? Collect the waste food, boil it for 30 min to avoid disease issues, feed to pigs, produce bacon. What could be better? Admittedly, my mother country has banned this practice (I’m beginning to wonder if anything will be permissible in Europe soon), but let’s start the pigswill revolution! Doesn’t “You don’t have to eat that last potato, it’ll make some really good bacon and help us feed those 1 in 7 kids in our local area who don’t have enough food” sound more realistic than “Think of all the starving orphans who would enjoy your PB&J sandwich” (to which the continual smart-a** answer was “I’ll just mail to to them). Let’s do what the livestock industry does best – recycle waste resources to make safe, affordable, nutritous meat!

Can We Please Have Calls for Moderating Meat Consumption… in Moderation?

Do we need to moderate meat consumption in order to feed the world in 2050? Given beef producers’ track record of ingenuity, it’s possible but not probable.

A Twitter follower (Tweep? Twriend? Twquaintance?) asked yesterday whether we could really supply 9+ billion people with 250 lb of meat per capita in 2050. The question stemmed from a recent paper in which Stockholm scientists claimed that we would all have to reduce meat consumption by 75% by 2050 in order to have enough water to supply the population, and a subsequent rejoinder from the American Society of Animal Science in which several scientists noted the flaws in the Swedish paper, the importance of animal-source foods in the diet and the use of marginal land for grazing livestock.

On Twitter, the comment was made that there appear to be two distinct sides to this argument – one side (the environmentalists and anti-animal agriculture groups) warning that we need to drastically cut meat consumption in order to feed everybody, and the other (the meat industry) turning a blind eye and effectively promoting the idea that we can eat all the meat that we like without having any environmental impact.

Globally, we’re nowhere near 250 lb meat consumption per capita, even US consumers who are often portrayed as meat-guzzling bacon-o-philes by the Huffington Post et al. have an average annual consumption of 171 lb according to the USDA. As current beef consumption is 58 lb per capita in the USA, that’s a lot of pork and chicken that will presumably make up the difference. There’s no doubt that increases in both population size and per capita income in regions such as China and India will have a significant impact on global meat consumption by 2050. However, I have to admit I find the “blind eye” comment a little hard to swallow, given, for example, the beef industry’s commitment to measuring and mitigating both resource use and carbon emissions through current life cycle analysis research, and involvement with groups such as the Global Roundtable for Sustainable Beef.

There is no doubt that beef production uses considerable amounts of land and water, yet should we expect producers to effectively shoot themselves in the foot and suggest that consumers forgo a cheeseburger in favor of an alfalfa sprout salad? Isn’t improved efficiency a characteristic of every successful industry? The motor industry is a major contributor to environmental concerns, yet automobile manufacturers aren’t saying “we’re going to produce cars in the same way that we did in the ‘50s, you’ll just have to drive less”. Instead, the message is something akin to “we’re making cars more energy-efficient so that you can continue to drive without worrying about your car’s environmental impact.

That’s exactly what the beef industry has done, is doing and will continue to do into the future. Since 1977, the US beef industry has cut water use by 12%, land use by 33% and the carbon footprint of one lb of beef by 16%. Providing that producers are still able to use management practices and technologies that improve efficiency, further reductions should be seen in future. Yet we have to look beyond the idea that the USA can feed the world by itself. I’m writing this post from Brazil, which has a huge beef industry, yet on average, Brazilian beef cattle first calve at 4 years of age, only 67% of cows have a calf each year and beef animals take 3 years to reach slaughter weight. Comparisons to the equivalent US figures (2 years, 91% and 15 months respectively), show the potential for amazing reductions in resource use from Brazilian beef production, and this, along with other less-efficient systems, is where we have to focus in future. It’s not about forcing US-style production on every producer; it’s about enabling producers to make the best and most efficient use of resources according to their management system and region. Brazil has just approved the use of beta-agonists in beef production, which will allow the production of more beef using fewer resources. This is just one step on the road to improved efficiency.

So do we need to moderate meat consumption in order to feed the world in 2050? I’d love to be able to answer this by citing a published paper that has taken improvements in meat industry productivity over the next 40 years into account rather than assuming a “business as normal” outcome. In the absence of such a paper, I’ll give a Magic 8-Ball type answer: Given beef producers’ track record of ingenuity, it’s possible but not probable. Globally, there are huge opportunities for improved efficiency and concurrent reductions in resource use from all meat production systems – the key is not to reduce meat production but simply to produce it more efficiently.

All Aboard the “Eat Less Meat” Bandwagon

One of the main criteria for publishing scientific research is that it should be novel, yet not a week goes by without yet another paper concluding that we have to reduce meat consumption in order to mitigate climate change. That’s the headline in media coverage relating to the latest paper from a researcher at the The Woods Hole Research Center (published in Environmental Letters), which examines nitrous oxide emissions (a highly potent greenhouse gas (GHG)) in 2050 under various scenarios.

It’s an interesting paper, not least for some of the assumptions buried within the model. Based on data from the FAO, the authors assume that meat consumption will increase by 14% in the developed world and 32% in the developing world by 2050. Coupled with the predicted population global increase (from the current 7 billion to 8.9 billion in 2050), it’s not surprising that a 50% reduction in meat consumption would be predicted to have a significant effect on total GHG. It’s rather akin to suggesting that each person will own two automobiles in 2050, so we should reduce car manufacture.

However, the more striking result is buried in Figure 1, showing that if efficiency of manure management and fertilizer application were improved, this would have a more significant effect on GHG emissions than reducing meat consumption. Given the considerable improvements in cropping practices, crop genetics and yields over the past 50 years there is absolutely no reason why this should not be achieved in the next 40 years.

Alas, a headline suggesting that agriculture needs to continue to improve manure and fertilizer efficiency just isn’t as sexy as the “eat less meat, save the planet” message so often propounded by the mass media. They say that bad news sells – it’s a shame that the lay press are so enamored with messages that denigrate ruminant production, rather than taking a broader look at the options available for mitigating future climate change.

*Thanks to Jesse R. Bussard for bringing this one to the forefront of my “to do “ list.

Forget Widgets and Factory Farms – Beef Production is the Circle of Life

The Chipotle short film “Back to the Start” which was featured in a commercial break during the GRAMMY awards on Sunday has been one of the most discussed topics on Facebook and Twitter in the past week.

It is incredibly powerful film. Beautifully animated and featuring Willie Nelson singing Coldplay’s “The Scientist”, the cartoon pigs are pink and symmetrical; the dairy cattle graze green grass (before their incarceration in a barn) and antibiotics come in cute little capsules. It’s even more potent because it represents a classic human theme – a mistake followed by redemption. Walking alone in the cold winter night, the farmer realizes his mistake in intensifying his production system, tears down his barns and lets his animals roam free. Who doesn’t love a classic redemption film?

Many of my agricultural friends have responded to this film with the entirely valid argument that Chipotle lack integrity by producing this film as they only source natural or local-produced meat where available. This marketing strategy therefore condemns a significant proportion of their suppliers who produce conventional meat and dairy. However, the average consumer, who only sees the film because they’re waiting to watch Adele’s latest GRAMMY acceptance speech, don’t read about the integrity conflict, and if they do, may assume it’s a reactive response by the ‘inherently biased’ animal agriculture industry.

The question then becomes, how do we overcome this powerful, yet discriminatory message with the fact that all systems have a valid place in food production? Bill Donald (Immediate Past President of NCBA) attended the World Food Prize in Des Moines this week and told me that the hot topic was the concept of future farms with ‘circular economies’. This means taking the ‘reduce, reuse, recycle‘ concept of a circular economy and incorporating it into agriculture, so that the consumer can see that every stage within the process reduces waste, saves resources and produces both nutritious food and useful by-products. It’s a huge hit with consumers in China who are becoming more concerned about environmental issues.

Ironically, this is nothing new – it’s the basis upon which beef production is founded. We take a human-inedible product such as grass, feed it to animals that provide us with meat, leather, pharmaceuticals and other by-products, use their manure to fertilize and grow the grass, produce more beef… It’s a closed and continuous circle of life that has used fewer resources and emitted less greenhouse gases year on year. Yet that’s a very different image to the intensive, inefficient system portrayed by the Chipotle film.

Agriculture is not and never has been a collection of factories pumping in antibiotics, churning out identical widget animals and releasing toxic green waste into rivers. The challenge ahead of us is to be proactive and to demonstrate beef’s circle of life to consumers – not only the 3 R’s (reduce, reuse, recycle), but the 4 F’s – food, fertilizer and fuel for the future.

Feed = Food? Do livestock really compete with humans for food?

Can we feed up to 10 billion people in 2100 by improving crop yields, reducing deforestation, and reducing meat and dairy consumption? These solutions are among those suggested by Jonathan Foley at the University of Minnesota’s Institute of the Environment to enable the increase in food production required by the future global population. These are logical suggestions, yet the proposal that meat and dairy consumption should be reduced is likely to be the most-debated, particularly as livestock industry stakeholders may regard this as yet another attack on animal agriculture.

The futility of the “Meatless Mondays” campaign has been discussed ad infinitum, yet in contrast to the EWG’s recent report, Foley does not attempt to promote a vegetarian or vegan ideology or to suggest that climate change could be reversed if only we all ate humanely-certified or organic meat. Instead, the report concludes that resources could be saved if we shifted to meat consumption towards pork and poultry production as:

…it takes 30 kilos [66 lb] of grain to produce one kilo [2.2lb] of boneless beef… We’re better off producing grass-fed beef or more chicken and pork, which requires far less grain feed

Based on those data, Foley’s conclusion is entirely logical. However, as Carl Sagan said, “Extraordinary claims require extraordinary evidence” – and here the evidence is lacking. A recent review of feed efficiency by Wilkinson reports that monogastric animals require 4.0 kg (swine) or 2.3 kg (poultry) of feed per kg of gain. Monogastrics are indeed considerably more efficient than their ruminant counterparts as beef animals require 8.8 kg feed per kg gain – considerably more than swine or poultry, but far less than Foley’s estimate.

It would be convenient to argue that the errors in Foley’s feed efficiency data (not to mention religious limitations on pork consumption) negate the report’s conclusions. But isn’t it logical to argue that we should eat meat produced in systems that use fewer resources to produce animal protein? Personally, I spend more than half my time traveling to present precisely that message to the animal industry and to encourage livestock producers to improve efficiency. I absolutely believe that we need to improve productivity and efficiency in order to feed the growing population. However, traditional feed efficiency data have a major flaw – it’s assumed that all animal feed could otherwise be used to feed humans.

Wilkinson suggests that the traditional concept of feed efficiency be re-examined to reflect the quantity of human-edible crop inputs that are used to produce a unit of energy or protein from animal products. For example, humans cannot digest pasture, only 20% of the nutritional value of oilseed meals can be utilized for human food and yet 80% of nutrients within cereals, pulses and soybean meal are human-edible. By partitioning out the human-edible component of animal feed, Wilkinson demonstrates that the human-edible energy feed efficiency ratios for pork and cereal beef are similar (Figure 1*) and that dairy production actually produces twice the amount of human-edible energy than it uses (input:output ratio of 0.5). On a protein basis, cereal beef has a higher human-edible protein feed efficiency ratio (3.0) than pork (2.6), but suckler beef systems where cattle are grazed on pasture again produce more human-edible protein than they consume (input:output ratio of 0.9, Figure 2*). Not only are these revised feed efficiency estimates considerably lower than those quoted by Foley, but they underline the importance of herbivorous grazing animals in utilizing human-inedible forage to produce animal protein.

  

Numbers have power – it’s always tempting to base a suggestion around a single data point that “proves” the argument. Feed efficiency is a useful metric, but as we face an ever-increasing challenge in balancing food demand, resource availability and consumer expectations, it’s critical that we examine the bigger picture. The ruminant animal has a major evolutionary advantage in its ability to digest forages – we may be better acquainted with the human dietary advantages of probiotic bacteria than our ancestors, but until we are equipped with human rumens (humens?) we cannot hope to effectively make use of all crop resources.

*The importance of acknowledging the human-edible component of feed efficiency was part of my presentation at the Alltech Ruminant Solutions Seminar in Ireland this week – to go to a PDF copy of my presentation please click here.