Oxford Student Union’s beef and lamb ban is laughable when compared to the Uni’s air travel emissions.

Screenshot 2020-11-24 at 12.15.33

There has been considerable publicity devoted to the announcement that the University of Oxford Student Union Council have voted to approve an on-campus beef and lamb ban, citing a desire to reduce greenhouse gas emissions.

The greenhouse gas emissions associated with beef production comprise methane, nitrous oxide and carbon dioxide, with methane accounting for ~60-80% of the total, depending on the production system. Ironically, climate researchers at the University of Oxford (who presumably don’t sit on the Student Union Council) have reported that atmospheric methane breaks down over ~20 years, unlike carbon dioxide from fossil fuel combustion (e.g. aviation fuel) which continues to accumulate over time.

I grew up in Oxford and have always loved the diversity added to the city residents by the truly global university community of students, researchers and staff.  However, it’s worth thinking about the carbon emissions of all the international flights that are therefore associated with the university (see infographic above).

To put flights into context:

  • The carbon emissions associated with a return flight to Paris = 4.8 months of beef consumption* per passenger.
  • The carbon emissions associated with a return flight to JFK = 2.8 years of beef consumption* per passenger.
  • The carbon emissions associated with a return flight to Sydney = 9.5 years of beef consumption* per passenger.

We should all take strides to reduce our greenhouse gas emissions wherever possible – surely we can only assume that banning air travel will be next on the Student Union Council agenda?

It’s worth noting that this vote doesn’t actually have any legislative power, as each college within the University runs its own catering and therefore makes independent decisions as to food sourcing. Furthermore, a vote by the Student Council is a vote by a very small proportion of students on the council, rather than the 22,000 students across the entire University. It therefore seems unlikely that the ban would be mandated without significant student revolt, but given how many kebab and burger vans line the streets of Oxford after 9pm, I imagine the proprietors are looking forwards to a huge increase in demand if it is ever enforced.

*at an average UK consumption of 18.2 kg beef per capita 

Are We Increasing Resource Use and Taking Beef from the Mouths of Hungry Children?

Bull eatingCan we really afford to lose the sustainability advantages that productivity-enhancing tools provide?

Beta agonists have been a hotly debated topic in the media recently, after it was suggested that the use of Zilmax™ might be related to welfare issues in supplemented cattle (see note 1), and Tyson announced that they would not purchase cattle produced using the feed supplement.

As the global population increases and consumer interest in food production sustainability continues to grow, we know that to maintain the continuous improvements in beef sustainability that we’ve seen over the past half-century, we need to ensure that economic viability, environmental responsibility and social acceptability are all in place. All cattle producers obviously have the choice as to what tools and practices are used within their operation, but what are the big picture environmental and economic implications of removing technology use from beef production? Let’s look at two tools – beta agonists and implants (see note 2 below for an explanation of these tools).

Figure 1. Extra Cattle NeededIn a traditional beef production system using both tools, we’d need 85 million total cattle (see note 3) to maintain the U.S. annual production of 26 billion lbs of beef (see note 4). If we removed beta-agonists from U.S. beef production we’d need an extra 3.5 million total cattle to support beef production; losing access to implants would require an extra 9.9 million cattle; and removing both tools would increase total cattle numbers to 100 million (a 15 million head increase) to maintain the current beef supply (see note 5).

If we need more cattle to maintain beef supply, we use more resources and have a greater carbon footprint.

If we removed beta-agonists, we would need more natural resources to maintain U.S. beef production:

  • More water, equivalent to supplying 1.9 million U.S. households annually (195 billion gallons)
  • More land, equivalent to an area just bigger than Maryland (14.0 thousand sq-miles)
  • More fossil fuels, equivalent to heating 38 thousand U.S. households for a year (3,123 billion BTU)

If we removed implants, we would need more natural resources to maintain U.S. beef production:

  • More water, equivalent to supplying 4.5 million U.S. households annually (457 billion gallons)
  • More land, equivalent to the area of South Carolina (31.6 thousand sq-miles)
  • More fossil fuels, equivalent to heating 45 thousand U.S. households for a year (3,703 billion BTU)

If we removed both beta-agonists and implants, we would need more natural resources to maintain U.S. beef production:

  • More water, equivalent to supplying 7.3 million U.S. households annually (741 billion gallons)
  • More land, equivalent to the area of Louisiana (51.9 thousand sq-miles)
  • More fossil fuels, equivalent to heating 98 thousand U.S. households for a year (8,047 billion BTU)

Water infographic

Land infographicFuel infographicBeef production costs would also increase if these tools weren’t used. Feed costs would increase by 4.0% without beta-agonists, 8.1% without implants and 11.0% without both tools. These costs ultimately would be passed on through every segment of the beef supply chain (including the retailer or food service segment) and ultimately onto the consumer, making beef a less-affordable protein choice.

In a world where one in seven children currently do not have enough food, keeping food affordable is key to improving their health and well-being. If we use productivity-enhancing tools in one single animal, the extra beef produced is sufficient to supply seven schoolchildren with their beef-containing school meals for an entire year. Is that a social sustainability advantage that we can afford to lose?

Although animal welfare is paramount for all beef production stakeholders from the cow-calf operator to the retailer, it is possible that the consumer perception of productivity-enhancing tools  may be harmed by negative comments on media articles relating to Zilmax™. There is no doubt that we will need to use technologies within food production in order to feed the growing global population, yet we need consumer acceptance of both the technologies that we use, and the reasons why we use them, in order to continue to secure market access for U.S. beef.

Consumer acceptance therefore needs to be a key component of our mission to continuously improve beef sustainability. That does not mean giving in to the uninformed whims of those who blithely assert that we could feed the world by returning to the production systems of the 1940’s or ’50s, but does offer an opportunity to reach out, listen to and engage in a dialogue with our friends, family, customers and colleagues about the advantages that technology offers. We have a bright future ahead, but only if we keep the torch alight.

To read more conversation about the use of technologies within beef production (including the real-life experiences of feedyard operators who use these tools) and for facts and figures relating to beef production, please check out the following websites: Feedyard Foodie, Ask a FarmerFacts About Beef, and the U.S. Farmers and Ranchers Alliance.

Footnotes

1) Merck Animal Health have since pledged to conduct a thorough investigation into the issue and have temporarily suspended Zilmax™ sales in the U.S. and Canada.

2) Beta agonists are animal feed ingredients that help cattle maintain their natural muscle-building ability and add about 20-30 pounds of additional lean muscle instead of fat. Implants (sometimes called growth promotants or growth hormones), are placed into the ear and release hormones slowly, helping cattle maintain natural muscle-building ability while also decreasing the amount of fat gained. 

3) Includes beef cows, calves, bulls, replacement animals, stockers and feedlot cattle plus calves and cull cows from the dairy system.

4) Although this is a considerable amount of beef, it’s still not enough to fulfill current demand for beef in the USA and overseas. 

5) This work was presented as a poster at the Joint Annual Meeting of the American Dairy Science Association and American Society of Animal Science in Indianapolis, IN in July 2013. The poster is available for download here