Who Needs Scientists? Just Let Mother Nature Design Your Greek Yogurt.

Chobani.jpgHow you get to 100 calories matters. Most companies use artificial sweeteners. We think Mother Nature is sweet enough”. Clever marketing from the greek yogurt company Chobani, simultaneously disparaging alternative brands, and playing the ultimate caring, sharing, natural card with the mention of “Mother Nature”. However, earlier this week, Chobani’s #howmatters hashtag set the twitter feeds alight after their new “witty” tagline on the underside of yogurt lids was posted (below).

howmattersThe wording plays beautifully into what is fast becoming a universal fear of science intruding on our food supply – we want real food; food like our grandparents ate; food from traditional breeds and heirloom varieties – providing it doesn’t take us over 2,000 cal per day or increase our cholesterol levels. Rightly or wrongly, many people blame processed foods with hidden sugars and added chemical preservatives for many health issues in developed countries – the epitome of a #firstworldproblem, given that the corresponding #thirdworldproblem is hunger and malnutrition.

However, this time the twitter anger wasn’t from rampaging mommy bloggers, or infuriated activists, but scientists. After all, without science, would Chobani have a product? Yogurt was first developed in ancient times, but the modern pasteurized, long-shelf-life, greek yogurt is rather different to the cultured milk our ancestors would have enjoyed.

FAGEI have a 100-calorie greek yogurt from a rival brand in my fridge, so let’s examine the ingredients (left). Simply pasteurized skimmed milk and live active yogurt cultures (note, no added sweeteners). Louis Pasteur, a 19th century French scientist developed pasteurization (in addition to his discoveries relating to vaccines and microbial fermentation); biologists developed methods to identify and classify the bacteria that ferment milk into yogurt; and food scientists experimented with the exact mixture of bacteria to produce the desired flavor, texture and color of yogurt,  as well as developing the range of other processes needed to make the yogurt safe, appealing and shelf-stable.

Yes, we could make greek yogurt without scientists – after all, the original recipe didn’t originate in a corporate experimental kitchen. But without hundreds of years of scientific input, could we make Greek yogurt that, at 100 calories per serving, is desirable to the consumer and is a safe, affordable source of vitamins, minerals and protein? No. To imply that we could does a huge disservice to food scientists.

It appears that being a modern-day scientist appears to be somewhat equivalent to clubbing baby seals to death. Caring little for human suffering and illness, the cold and clinical scientist rubs his hands together with glee as he removes all nutrients from real food, replacing them with chemicals, additives and genetically-modified ingredients. As a side-line, he develops cocktails of toxic elements, pesticides and embalming fluid and markets them as vaccines. Yes, science is the enemy. Just remember that next time you take an aspirin for a hangover from pasteurized, fermented beverages.

How Long is Long-Term? Are We in Danger of Sacrificing Food Security to Satisfy GMO Paranoia?

FrankenfoodsMy Twitter feed is being taken over by two things: 1) arguments and 2) comments that are going to cause arguments. Almost every tweet appears to draw a contrary comment – I’m tempted to post “Elephants have four legs and one trunk” just to see how many people reply “No, there’s an elephant in South Africa called Minnie who only has three legs but has two trunks…”

The latest discussions (debates? arguments? long drawn-out 140-character battles?) have related to the safety of GMOs. Without exception, the argument from the nay-sayers comes down to “We don’t know what the long-term effects are, so we should ban them until we can conclude that they’re safe.”

In other words, we’re trying to prove a negative – show me that there’s no adverse effects whatsoever and I’ll believe it’s ok. Utterly impossible. Can you be absolutely sure that the screen you’re reading this on isn’t causing constant, minute but irreparable damage to your eyes? Water, that essential nutrient without which humans, animals and plants would die, can kill through drowning or intoxication. Even oxygen, without which brain cells are irretrievably damaged in just 10 minutes,  causes seizures and death when inhaled at high pressures. Should we ban these, just in case?

Perhaps we should take a long-term approach to all new technologies. iPhones were only introduced seven years ago, yet many of us spend considerable amounts of time typing on them, or holding them to our ears when they’re not in our pockets – what health-damaging consequences could these shiny new toys confer? What about the now-ubiquitous hand sanitizer? Once only the province of hospitals and germophobes, it’s now sloshed around by the gallon. Touted to kill 99.9% of harmful bacteria – what harm could those chemicals be doing to our fragile physiology?

I’ve yet to meet anybody who, when scheduled for quadruple bypass surgery, demanded that the surgeon only used techniques developed in 1964; or a type I diabetes sufferer who would only use insulin produced from pigs, as it was originally in 1923. When I was treated for breast cancer, I jumped at the chance to be part of a clinical trial involving a new monoclonal antibody treatment, regardless of the very slight risk of heart damage. In medicine, we seem happy to trust that science has the answers – not surprisingly, we prefer to survive today and take our changes with side-effects tomorrow.

With regards to food however, the opposite appears to be the case. The first commercial GMO (the Flavr Savr tomato) was introduced in 1994, GM corn and soy were commercialized in 1996, and not one death or disease has been attributed to any of these crops. Yet the “what are the long-term effects?” concern still persists. So how long-term is long enough? 10 years? 20? 50? Should we keep researching and testing these crops for another 80+ years before allowing them onto the market around the year 2100?

If your answer is yes, just pause for a moment and ask your parents, grandparents or even great-grandparents what life was like during the Great Depression in the USA, or World War II in Europe. Consider what life was like when food was scarce or rationed, when, for example, a British adult was only allowed to buy 4 oz of bacon, 8 oz ground beef, 2 oz each of butter and cheese, 1 fresh egg and 3 pints of milk per week. Those quantities of meat and cheese would only be enough to make two modern bacon cheeseburgers.

By 2050, the global population is predicted to be over 9 billion people. I don’t relish the idea of explaining to my grandchildren that they live with food scarcity, civil unrest (food shortages are one of the major causes of conflict) and malnutrition because public paranoia regarding GMOs meant that a major tool for helping us to improve food production was removed from use. In the developed world we have the luxury of choosing between conventional, natural, local, organic and many other production systems. However, we’re in danger of forgetting that not everybody has the same economic, physical or political freedom to choose. If you gave a basket of food to a family in sub-Saharan Africa subsisting on the equivalent of $30 per week, would they refuse it on the basis that the quinoa wasn’t from Whole Foods, the meat wasn’t organic and the tofu wasn’t labeled GMO-free?

When we have sufficient food being supplied to everybody in the world to allow them to be healthy and productive, we can then start refining the food system. Until then, the emphasis should be on finding solutions to world hunger, not forcing food system paranoia onto those who don’t have a choice.